COE CST Second Annual Technical Meeting: Fracture Mechanics of Sapphire for High Temperature Pressure Transducers

Justin Collins Advisor: William Oates

Federal Aviation Administration

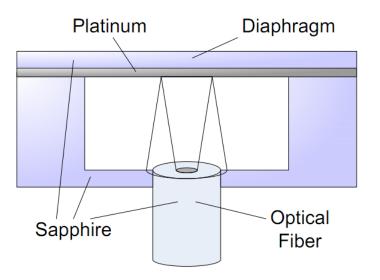
10/31/2012

Team Members

- Mark Sheplak (UF)
- David Mills(UF)
- Daniel Blood(UF)

Overview

- Motivation
- Background
 - Structure property relations
- Experimental work
 - TEM Characterization
- Theoretical calculations
 - Anisotropic fracture mechanics
- Summary and future work

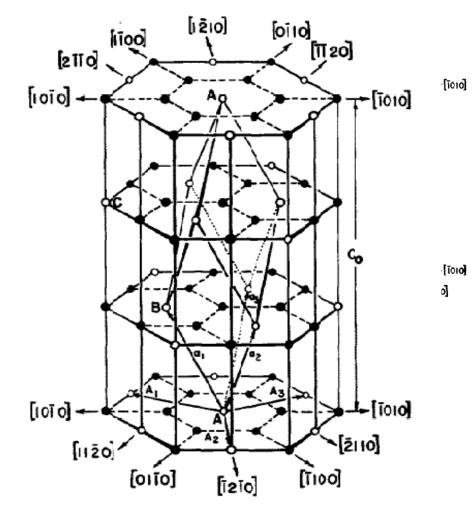


Motivation

- Commercial sensors capable of up to approximately 600°C
 - Uses SOI technology
- Alternative material sapphire: potentially capable of up to 1500°C
- Laser machining to cut specimens
 - Hard
 - Chemically Inert

Kulite Pressure Transducer

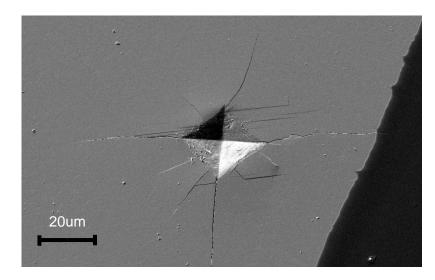
Structure-Property Relations

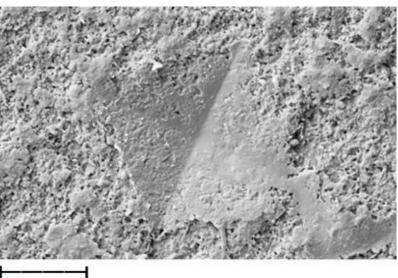

- Sapphire crystallographic structure
 - Complicated by hexagonal cage & internal rhombohedral structure
- *Anisotropic elastic behavior
 - Rhombohedral—not hexagonal

 $\sigma_{ij} = c_{ijkl} \varepsilon_{kl}$

• Melting temperature 2030 °C

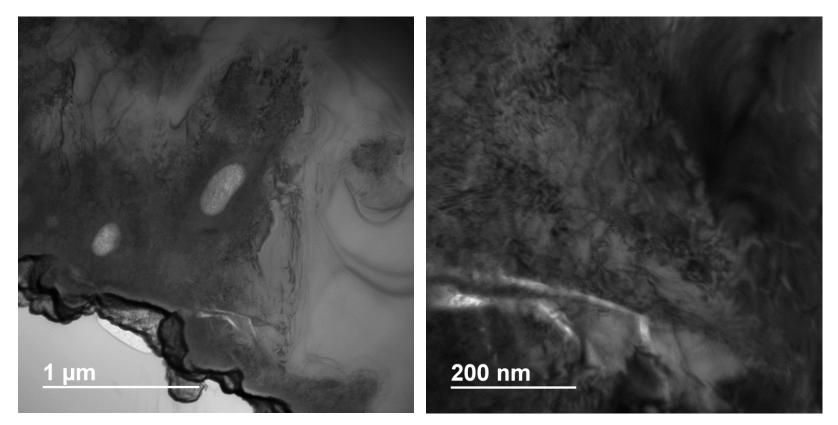
Basal half loop dislocation


Hockey, Journal of the American Ceramic Society, May 1971, Vol. 54, No. 5


*Ohno, Phys. Chem. Solids Vol. 47, No. 12. pp. I ION 108. 1986

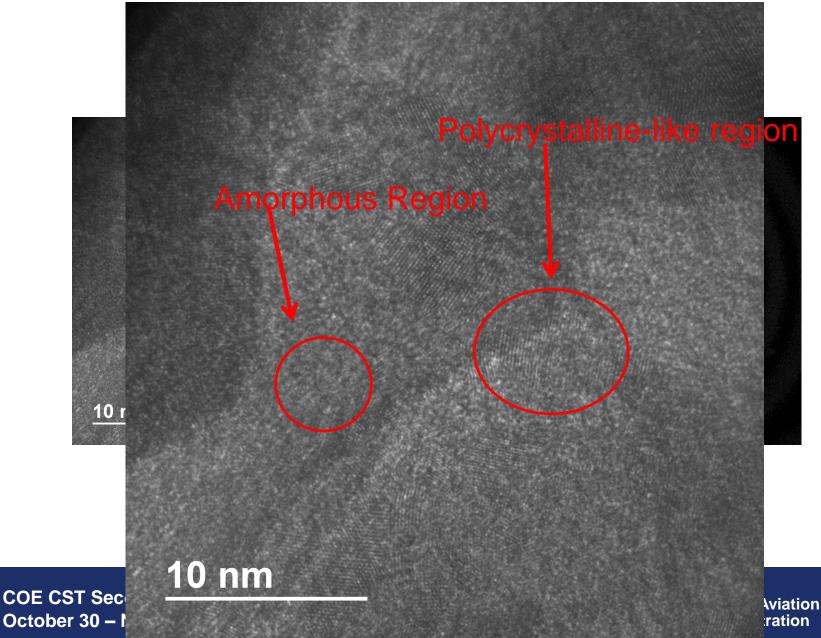
Toughness Induced Laser Machining

- Vicker's indentation characterization
- No visible cracks in laser machined specimens
- Laser machining parameters
 - 10 kHz rep rate, 10 mm/s scanning speed, 3.8 J/cm² fluence, 3um stepover



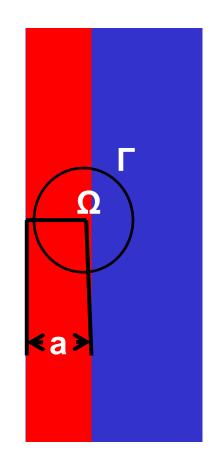
TEM Characterization

- High resolution TEM located at the NHMFL
 - 0.8 Angstrom resolution


COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Federal Aviation Administration

TEM Characterization-2

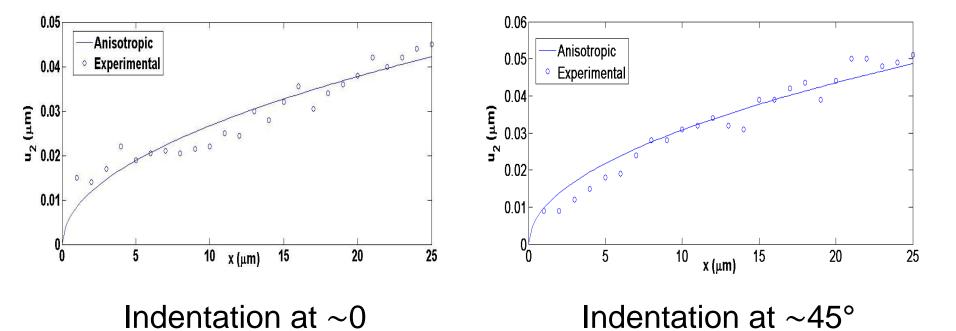


Theoretical Fracture Analysis

Eshelby stress tensor

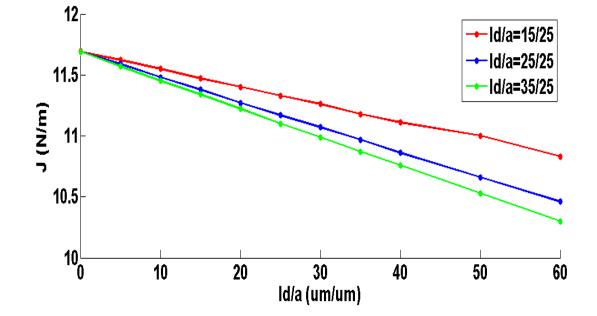
J-Integral

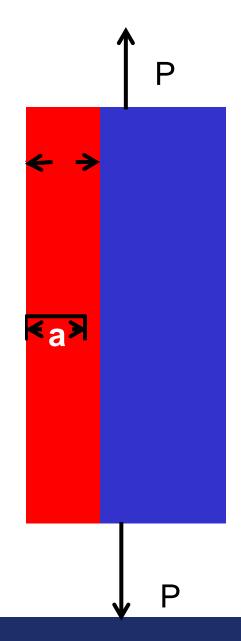
When this condition occurs a crack propagates.



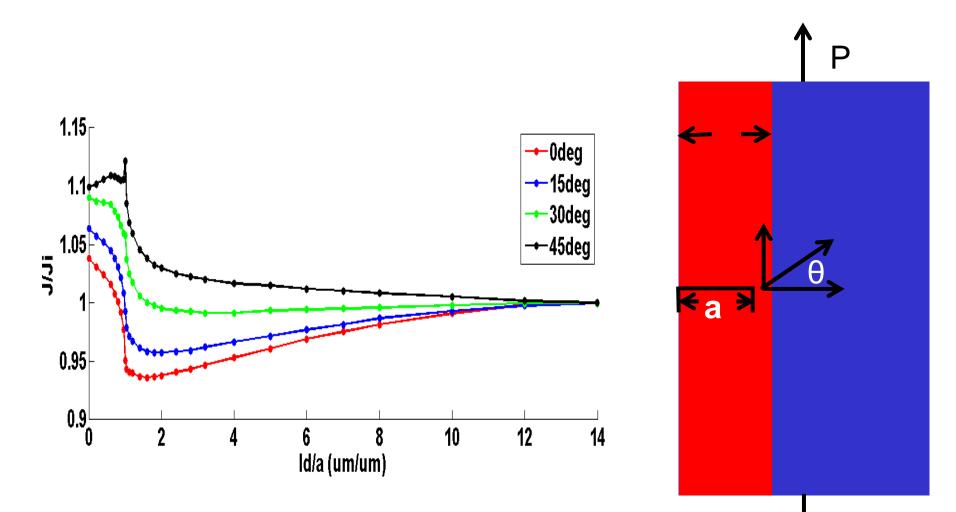
Fracture Toughness

o
$$K_{1c} \cong 2.2$$
 [−]
o $\cong 11.64 -$


• $K_{1c} \cong 2.50$



Theoretical Work-Residual Strain



Theoretical Work-Isotropic to Anisotropic

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Ρ

Summary

- Laser machining subsurface damage quantified
 - TEM characterization identified dislocations
 - Amorphous and polycrystalline-like behavior also observed
- Anisotropic fracture toughness
 - Significant dependence on crystal anisotropy
- Future work
 - Thermal annealing & laser parameter studies
 - Transition to pressure sensing characterization

Acknowledgements

- National High Magnetic Field Laboratory
 - Dr. Yan Xin
 - NHMFL-Applied Superconductivity Center
- FAA
- FAMU-FSU College of Engineering
- University of Florida
 - Mark Sheplak, David Mills, Daniel Blood, Tony Smitz (UNC Charlotte)

Contact Information

- Justin Collins
 - Research Assistant
 - Email: justin.collins.eng@gmail.com
- William Oates
 - Associate Professor
 - Email: woates@eng.fsu.edu
 - Phone: (850) 645-0139
 - Fax: (850) 410-6337

Quad Chart

Major Milestones Past

- Fracture toughness of laser machined sapphire experimentally characterized
- Higher toughness observed in laser machined specimens
- Origin of increased toughness explored through scanning electron microscopy (SEM) comparisons with anisotropic fracture mechanics theory

Major Milestones Present

- Transmission electron microscopy (TEM) used to identify potential toughening mechanism: dislocation formation, residual strain, and/or amorphous zone formation
- Toughening found to depend on thermal annealing: T>1200°C, indentation cracks formed similar to virgin material
- Theories based in laser damaged zone near a crack tip implemented to illustrate differences in crack tip driving forces

COE CST Second Annual Technical Meeting (ATM2) October 30 – November 1, 2012

Major Milestones Future

- Quantify differences in micro and nanostructure after thermal annealing using TEM
- Design and implement sapphire-based pressure transducer in a thermo-mechanical loading environment

<u>Budget</u>

FY12 - FY13 - FY14 - FY15 - FY16 - FY17 \$93k - \$86k - \$0k - \$0k - \$0k - \$0k

Cost matching: 134k

Funding Requirements – Five Years

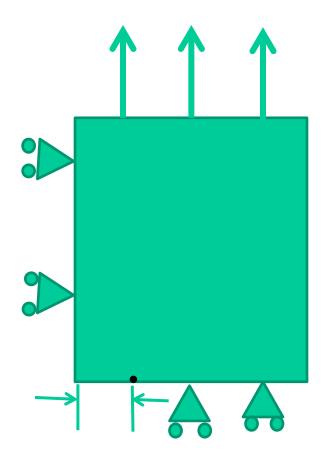
- Gross received thru October 31, 2012
- Gross requested for five total years broken out by year

Backup Slides

C ₁₁	C ₃₃	C44	C ₁₂	C ₁₃	C14	Ref.
496.9 ± 1.4	500.5 ± 1.6	146.8 ± 0.2	162.3 ± 1.6	115.5 ± 1.6	-21.9 ± 0.2	present work
496	502	141	135	117	-23	[8]
496.8 ± 1.8	498.1 ± 1.4	147.4 ± 0.2	163.6 ± 1.8	110.9 ± 2.2	-23.5 ± 0.3	[9]
490.2	490.2	145.4	165.4	113.0	-23.2	[10]
497.4	499.4	147.4	164.0	112.3	-23.6	[11]
497.60 ± 0.18	501.85 ± 0.21	147.24 ± 0.13	162.6 ± 0.4	117.18±0.19	-22.90 ± 0.11	[12]

Table 4. Determined elastic constants of corundum and their standard deviations in GPa. Previous data are also shown

Dislocation Mechanics


- Basal dislocations associated with a 100-g indentation on a (0001) basal plane section
- Specimen polished with abrasive paper.
- How does laser machining affect the properties of sapphire? Are dislocations induced during the process?

FEM Analysis

